1,746 research outputs found

    Past electron-positron g-2 experiments yielded sharpest bound on CPT violation for point particles

    Full text link
    In our past experiments on a single electron and positron we measured the cyclotron and spin-cyclotron difference frequencies omega_c and omega_a and the ratios a = omega_a/ omega_c at omega_c = 141 Ghz for e^- and e^+ and later, only for e^-, also at 164 Ghz. Here, we do extract from these data, as had not done before, a new and very different figure of merit for violation of CPT symmetry, one similar to the widely recognized impressive limit |m_Kaon - m_Antikaon|/m_Kaon < 10^-18 for the K-mesons composed of two quarks. That expression may be seen as comparing experimental relativistic masses of particle states before and after the C, P, T operations had transformed particle into antiparticle. Such a similar figure of merit for a non-composite and quite different lepton, found by us from our Delta a = a^- - a^+ data, was even smaller, h_bar |omega_a^- - omega_a^+|/2m_0 c^2 = |Delta a| h_bar omega_c/2m_0 c^2) < 3(12) 10^-22.Comment: Improved content, Editorially approved for publication in PRL, LATEX file, 5 pages, no figures, 16

    Generation and Evolution of Spin Entanglement in NRQED

    Full text link
    A complete analysis on the generation of spin entanglement from NRQED is presented. The results of entanglement are obtained with relativistic correction to the leading order of (v/c)^2. It is shown that to this order the degree of entanglement of a singlet state does not change under time evolution whereas the triplet state can change.Comment: 8 pages, 1 figure, to appear in Phys. Rev.

    Terahertz Time-Domain Magnetospectroscopy of a High-Mobility Two-Dimensional Electron Gas

    Full text link
    We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>106cm2V1s1>{10}^{6} \mathrm{cm^{2} V^{-1} s^{-1}}) sample without being affected by the saturation effect.Comment: 4 pages, 3 figure

    Detection of noise-corrupted sinusoidal signals with Josephson junctions

    Full text link
    We investigate the possibility of exploiting the speed and low noise features of Josephson junctions for detecting sinusoidal signals masked by Gaussian noise. We show that the escape time from the static locked state of a Josephson junction is very sensitive to a small periodic signal embedded in the noise, and therefore the analysis of the escape times can be employed to reveal the presence of the sinusoidal component. We propose and characterize two detection strategies: in the first the initial phase is supposedly unknown (incoherent strategy), while in the second the signal phase remains unknown but is fixed (coherent strategy). Our proposals are both suboptimal, with the linear filter being the optimal detection strategy, but they present some remarkable features, such as resonant activation, that make detection through Josephson junctions appealing in some special cases.Comment: 22 pages, 13 figure

    Discovery of a Role for Rab3b in Habituation and Cocaine Induced Locomotor Activation in Mice Using Heterogeneous Functional Genomic Analysis

    Get PDF
    Substance use disorders are prevalent and present a tremendous societal cost but the mechanisms underlying addiction behavior are poorly understood and few biological treatments exist. One strategy to identify novel molecular mechanisms of addiction is through functional genomic experimentation. However, results from individual experiments are often noisy. To address this problem, the convergent analysis of multiple genomic experiments can discern signal from these studies. In the present study, we examine genetic loci that modulate the locomotor response to cocaine identified in the recombinant inbred (BXD RI) genetic reference population. We then applied the GeneWeaver software system for heterogeneous functional genomic analysis to integrate and aggregate multiple studies of addiction genomics, resulting in the identification o

    Traffic particles and occurrence of acute myocardial infarction: a case–control analysis

    Get PDF
    OBJECTIVES: We modelled exposure to traffic particles using a latent variable approach and investigated whether long-term exposure to traffic particles is associated with an increase in the occurrence of acute myocardial infarction (AMI) using data from a population-based coronary disease registry. METHODS: Cases of individually validated AMI were identified between 1995 and 2003 as part of the Worcester Heart Attack Study. Population controls were selected from Massachusetts, USA, resident lists. NO(2) and PM(2.5) filter absorbance were measured at 36 locations throughout the study area. The air pollution data were used to estimate exposure to traffic particles using a semiparametric latent variable regression model. Conditional logistic models were used to estimate the association between exposure to traffic particles and occurrence of AMI. RESULTS: Modelled exposure to traffic particles was highest near the city of Worcester. Cases of AMI were more exposed to traffic and traffic particles compared to controls. An interquartile range increase in modelled traffic particles was associated with a 10% (95% CI 4% to 16%) increase in the odds of AMI. Accounting for spatial dependence at the census tract, but not block group, scale substantially attenuated this association. CONCLUSIONS: These results provide some support for an association between long-term exposure to traffic particles and risk of AMI. The results were sensitive to the scale selected for the analysis of spatial dependence, an issue that requires further investigation. The latent variable model captured variation in exposure, although on a relatively large spatial scale

    Materials for phantoms for terahertz pulsed imaging

    Get PDF
    Phantoms are commonly used in medical imaging for quality assurance, calibration, research and teaching. They may include test patterns or simulations of organs, but in either case a tissue substitute medium is an important component of the phantom. The aim of this work was to identify materials suitable for use as tissue substitutes for the relatively new medical imaging modality terahertz pulsed imaging. Samples of different concentrations of the candidate materials TX151 and napthol green dye were prepared, and measurements made of the frequency-dependent absorption coefficient (0.5 to 1.5 THz) and refractive index (0.5 to 1.0 THz). These results were compared qualitatively with measurements made in a similar way on samples of excised human tissue (skin, adipose tissue and striated muscle). Both materials would be suitable for phantoms where the dominant mechanism to be simulated is absorption (similar to ∼100 cm(-1) at 1 THz) and where simulation of the strength of reflections from boundaries is not important; for example, test patterns for spatial resolution measurements. Only TX151 had a frequency-dependent refractive index close to that of tissue, and could therefore be used to simulate the layered structure of skin, the complexity of microvasculature or to investigate frequency-dependent interference effects that have been noted in terahertz images

    Analytical model for laser-assisted recombination of hydrogenic atoms

    Full text link
    We introduce a new method that allows one to obtain an analytical cross section for the laser-assisted electron-ion collision in a closed form. As an example we perform a calculation for the hydrogen laser-assisted recombination. The SS-matrix element for the process is constructed from an exact electron Coulomb-Volkov wave function and an approximate laser modified hydrogen state. An explicit expression for the field-enhancement coefficient of the process is expressed in terms of the dimensionless parameter κ=eϵ0/qω02\kappa= |{e\epsilon_{0}}/{q\omega_{0}}|^{2}, where ee and qq are the electron charge and momentum respectively, and ϵ0\epsilon_{0} and ω0\omega_{0} are the amplitude and frequency of the laser field respectively. The simplified version of the cross section of the process is derived and analyzed within a soft photon approximation.Comment: 10 page
    corecore